Nature: В нанотрубках обнаружена сверхэластичность, вызванная окислением
Окисление может ухудшить свойства и функциональность металлов. Однако недавно исследовательская группа под руководством ученых из Городского университета Гонконга обнаружила, что сильно окисленные нанотрубки из металлического стекла могут достигать сверхвысокой восстанавливаемой упругой деформации, превосходящей большинство обычных сверхэластичных металлов.

Они также обнаружили физические механизмы, лежащие в основе этой сверхэластичности. Их открытие означает, что окисление в низкоразмерном металлическом стекле может привести к уникальным свойствам для применения в датчиках, медицинских приборах и других наноустройствах.
В последние годы функциональные и механические свойства низкоразмерных металлов, включая наночастицы, нанотрубки и нанолисты, привлекли внимание в связи с их потенциальным применением в малогабаритных устройствах, таких как датчики, нанороботы и метаматериалы. Однако большинство металлов электрохимически активны и подвержены окислению в окружающей среде, что часто ухудшает их свойства и функциональные возможности.
Металлические наноматериалы имеют высокое отношение поверхности к объему, которое может достигать 108 м-1. Поэтому в принципе ожидается, что они будут особенно подвержены окислению, — говорит профессор Ян Йонг с факультета машиностроения CityU, который вместе с коллегами возглавил исследовательскую группу.
Чтобы использовать низкоразмерные металлы для создания устройств следующего поколения и метаматериалов, мы должны тщательно изучить негативные последствия окисления для свойств этих нанометров, а затем найти способ их преодолеть.
Поэтому профессор Ян и его команда исследовали окисление в нанометрах и, резко противореча своим ожиданиям, обнаружили, что сильно окисленные нанотрубки и нанолисты из металлического стекла могут достигать сверхвысокой восстанавливаемой упругой деформации около 14% при комнатной температуре, что превосходит объемные металлические стекла, нанопроволоки из металлического стекла и многие другие сверхэластичные металлы.
Они изготовили нанотрубки из металлического стекла со средней толщиной стенок всего 20 нм и сконструировали нанолисты из различных подложек, таких как хлорид натрия, поливиниловый спирт и обычные подложки для фоторезиста, с разным уровнем концентрации кислорода.
Затем они провели трехмерные измерения с помощью атомной зондовой томографии (APT) и спектроскопии потерь энергии электронов. В обоих случаях оксиды были диспергированы внутри металлических стеклянных нанотрубок и нанолистов, в отличие от обычных объемных металлов, в которых твердый оксидный слой образуется на поверхности. По мере увеличения концентрации кислорода в образцах в результате реакций между металлом и подложкой внутри нанотрубок и нанолистов формировались связанные и перколирующие оксидные сети.
Измерения микросжатия in-situ также показали, что сильно окисленные нанотрубки и нанолисты из металлического стекла демонстрируют восстанавливаемую деформацию 10-20%, что в несколько раз больше, чем у большинства обычных сверхэластичных металлов, таких как сплавы с памятью формы и десневые металлы. Нанотрубки также обладали сверхнизким модулем упругости — около 20-30 ГПа.
Чтобы понять механизм, лежащий в основе этого явления, команда провела атомистическое моделирование, которое показало, что сверхэластичность возникает в результате сильного окисления нанотрубок и может быть связана с образованием устойчивой к повреждениям перколяционной сети нанооксидов в аморфной структуре. Эти оксидные сети не только ограничивают атомно-масштабные пластические явления при нагрузке, но и приводят к восстановлению упругой жесткости при разгрузке в металлических стеклянных нанотрубках.
Наше исследование представляет подход к нанооксидной инженерии для низкоразмерных металлических стекол. Морфологией нанооксидов в нанотрубках и нанолистах из металлического стекла можно манипулировать, регулируя концентрацию оксидов: от изолированной дисперсии до связанной сети, — говорит профессор Янг.
С помощью этого подхода мы можем разработать класс гетерогенных наноструктурированных металлокерамических композитов, смешивая металлы с оксидами на наноуровне. Такие композиты имеют большой потенциал для различных будущих коммерческих применений и наноустройств, работающих в жестких условиях, таких как датчики, медицинские устройства, микро- и нанороботы, пружины и приводы.
Результаты исследования были опубликованы в журнале Nature Materials.