Суперкомпьютер поможет понять принципы возникновения турбулентности и повысить безопасность полетов
Исследовательская группа из Университета Нагоя с помощью самого быстрого в Японии суперкомпьютера точно смоделировала турбулентность воздуха, возникающую в ясные дни в окрестностях Токио.
Затем ученые сравнили полученные результаты с данными полетов, чтобы создать более точную прогностическую модель. Результаты исследования опубликованы в журнале Geophysical Research Letters.
Хотя турбулентность воздуха обычно ассоциируется с плохой погодой, салон самолета может сильно трястись даже в солнечный и безоблачный день. Эти турбулентные движения воздуха, называемые турбулентностью в прозрачном воздухе (CAT), могут происходить в отсутствие видимых облаков или других атмосферных возмущений. Хотя точные механизмы, вызывающие CAT, до конца не изучены, считается, что в основном они обусловлены сдвигом ветра и неустойчивостью атмосферы.
CAT представляет собой высокий риск для безопасности полетов. Внезапная турбулентность в спокойный день может привести к травмам пассажиров и членов экипажа, повреждениям воздушных судов и сбоям в выполнении полетов. Пилоты полагаются на сообщения других самолетов, метеорологические радары и атмосферные модели, чтобы предвидеть и избегать зон возможной турбулентности. Однако, поскольку CAT не имеет видимых признаков, таких как облака или шторм, ее особенно сложно обнаружить и спрогнозировать.
При закручивании и циркуляции ветра, вызывающих резкие изменения воздушного потока, возникают вихри, которые могут сотрясать самолет. Поэтому для лучшего понимания CAT ученые моделируют ее с помощью крупномасштабного вихревого моделирования (LES) — метода вычислительной гидродинамики, используемого для моделирования турбулентных потоков. Однако, несмотря на важность метода для исследования воздушной турбулентности, одной из главных проблем LES является стоимость вычислений. Моделирование сложных взаимодействий в LES требует больших вычислительных мощностей.
Для детального моделирования процесса возникновения турбулентности с помощью LES высокого разрешения исследовательская группа из Университета Нагои обратилась к экзафлопсному компьютеру Fugaku supercomputer. Это высокопроизводительная вычислительная система, которая в настоящее время является вторым по быстродействию суперкомпьютером в мире.
Используя огромную вычислительную мощность Fugaku, доктор Рёичи Йошимура из Университета Нагоя в сотрудничестве с доктором Дзюнши Ито и другими специалистами из Университета Тохоку провели моделирование с ультравысоким разрешением воздушного потока над токийским аэропортом Ханеда в зимний период, вызванного низким давлением и расположенным рядом горным массивом.
Они обнаружили, что возмущение скорости ветра вызвано разрушением волны неустойчивости Кельвина-Гельмгольца — особого типа неустойчивости, возникающей на границе раздела двух слоев воздуха с разными скоростями. Поскольку скорость одного слоя выше, чем у другого, он создает волнообразный эффект, увлекая за собой слой с меньшей скоростью. Когда атмосферные волны растут с запада и схлопываются на востоке, это явление приводит к образованию нескольких мелких вихрей, создающих турбулентность.
После проведения расчетов группе необходимо было подтвердить соответствие смоделированных вихрей реальным данным.
В окрестностях Токио имеется много данных наблюдений, позволяющих подтвердить наши результаты, — говорит Йошимура.
Над аэропортами летает много самолетов, что приводит к многочисленным сообщениям о турбулентности и интенсивности тряски.
Также использовались наблюдения за атмосферой с помощью воздушного шара вблизи Токио. Данные о тряске, зарегистрированные в это время, были использованы для подтверждения правильности расчетов».
Результаты этого исследования должны привести к более глубокому пониманию принципа и механизма возникновения турбулентности путем моделирования с высоким разрешением и позволить нам более детально исследовать влияние турбулентности на самолеты, — сказал Йошимура.
Поскольку было показано, что значительная турбулентность возникает в ограниченной трехмерной области, прокладка маршрута без полета в этой области возможна путем корректировки уровней полета, если заранее известно о наличии активной турбулентности. LES обеспечит разумный способ полета, предоставляя более точные прогнозы турбулентности и предсказания в реальном времени.